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Notation

F2 = {0, 1}, the binary field.
N = {0, 1, 2, . . .}, the set of nonnegative integers.

A binary linear code C of length n and dimension k is a subspace of Fn
2

of dimension k. Elements of C are called codewords.

A parity check matrix of a code C is any matrix H ∈ Fr×n
2 such that C

is the null space of H.

Given a parity check matrix H of C and y ∈ Fn
2,

y ∈ C if and only if HyT = 0.
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Parity check matrix of a code is not unique.

The code

C =

{
(0, 0, 0, 0), (0, 1, 1, 1)
(1, 0, 1, 0), (1, 1, 0, 1)

}
⊂ F4

2

is a binary linear code of length 4 and dimension 2.

This code has as a
parity check matrix

:

H =

(
1 1 1 0
1 0 1 1

)
, H1 =

(
1 1 1 0
0 1 0 1

)
,

H2 =

(
1 0 1 1
0 1 0 1

)
, H3 =


1 0 1 1
0 1 0 1
0 1 0 1
1 1 1 0

 .

A code C given by a parity check matrix H is denoted C (H).
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A parity check matrix corresponds to a bipartite graph
called the Tanner graph.

H =

(
1 1 1 0
1 0 1 1

)



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

A parity check matrix corresponds to a bipartite graph
called the Tanner graph.

H =

(
1 1 1 0
1 0 1 1

)



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

A parity check matrix corresponds to a bipartite graph
called the Tanner graph.

H =

(
1 1 1 0
1 0 1 1

)

The Tanner graph of H is a bipartite graph with a vertex set X ∪ F such
that:

Each vertex in X corresponds to a column of H and is called a bit
node.

Each vertex in F corresponds to a row of H and is called a check
node.

{xi , fj} is an edge if and only if hji = 1.
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A codeword corresponds to a valid configuration on the
Tanner graph.

(1, 1, 0, 1) is a codeword

H =

(
1 1 1 0
1 0 1 1

)
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A codeword corresponds to a valid configuration on the
Tanner graph.

(1, 1, 0, 1) is a codeword

(
1 1 1 0
1 0 1 1

)
·


1
1
0
1

 =

(
0
0

)
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A codeword corresponds to a valid configuration on the
Tanner graph.

1

1

1

0

(1, 1, 0, 1) is a codeword

(
1 1 1 0
1 0 1 1

)
·


1
1
0
1

 =

(
0
0

)

Since a check node represents a row, i.e. a parity condition, of H,
c = (c1, c2, . . . , cn) is a codeword of C (H) if and only if every check node
is adjacent to an even number of 1’s.
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A codeword corresponds to a valid configuration on the
Tanner graph.

1

0

1

0

(1, 1, 0, 0) is not a codeword

(
1 1 1 0
1 0 1 1

)
·


1
1
0
0

 =

(
0
1

)

Since a check node represents a row, i.e. a parity condition, of H,
c = (c1, c2, . . . , cn) is a codeword of C (H) if and only if every check node
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Thou shall vote!

1

0

1

0

Let the check nodes “vote” for the bit nodes to be flipped. Reiterate as
necessary.

Gallager’s algorithm A reassigns the value of the bit notes that are
adjacent to a certain number of unsatisfied check nodes.
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Soft decision decoding works well on graphs.

1 

4 

2 

3 

Upon receiving the message w, initialize each bit with

γi = log
(

P(wi |ci=0)
P(wi |ci=1)

)
, the log-likelihood ratio at the i th coordinate.

The maximum likelihood decoding is equivalent to finding a binary value
assignment (c1, c2, . . . , cn) to the bit nodes such that

∑n
i=1 γici is

minimized and every check node is adjacent to an even number of 1’s.
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Soft decision decoding works well on graphs.

1 

5 

-2 

-4 

Each bit is initialized with the log-likelihood ratio γi = log
(

P(wi |ci=0)
P(wi |ci=1)

)
.

To compute the message to the first bit, the first check takes into
consideration only the message from the second the third bits.
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Min-sum algorithm marginalizes the cost function.

Initialization: For each bit node i , initialize the local cost γi . For

each check node j and for all s ∈ Nbhd(j), initialize µ
(0)
j,s := 0.

Iteration: For i = 1, . . . ,m:
1 For all bit nodes s and for all j ∈ Nbhd(s), bit-to-check messages are

given by

µ
(i)
s,j := γs +

∑
j′∈Nbhd(s)−{j}

µ
(i−1)
j′,s .

2 For all check nodes j and for all s ∈ Nbhd(j), check-to-bit messages
are given by

µ
(i)
j,s :=

∏
s′∈Nbhd(j)−{s}

sgn
(
µ

(i)
s′,j

)
· min
s′∈Nbhd(j)−{s}

∣∣∣µ(i)
s′,j

∣∣∣
Final cost computation: The final cost at the bit node i after m
iterations is

µi := γi +
∑

j∈Nbhd(i)

µ
(m)
j,i .
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Sum-product algorithm marginalizes the probability.

Initialization: For each bit node i , initialize the local cost

γi = log
(

P(ci=0|wi )
P(ci=1|wi )

)
. For each check node j and for all

s ∈ Nbhd(j), initialize µ
(0)
j,s := 0.

Iteration: For i = 1, . . . ,m:
1 For all bit nodes s and for all j ∈ Nbhd(s), bit-to-check messages are

given by

µ
(i)
s,j := γs +

∑
j′∈Nbhd(s)−{j}

µ
(i−1)
j′,s .

2 For all check nodes j and for all s ∈ Nbhd(j), check-to-bit messages
are given by

µ
(i)
j,s := log

1 +
∏

s′∈Nbhd(j)−{s} tanh
(
µ

(i)
s′,j/2

)
1−

∏
s′∈Nbhd(j)−{s} tanh

(
µ

(i)
s′,j/2

)


Final cost computation: The final cost at the bit node i after m
iterations is

µi := γi +
∑

j∈Nbhd(i)

µ
(m)
j,i .
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Advantages and disadvantages of iterative decoders

Easy to implement.

Can be applied to any code.

Low-complexity: exponential in the check node degree, linear in
code length for low-density parity-check (LDPC) codes.

Allow communication at rates near the channel capacity.

Depends on the parity check matrix.

Converge to a maximum-likelihood codeword in 1 iteration if the
Tanner graph is cycle-free.

May converge to a noncodeword output called a pseudocodeword.
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A graph cover is a multi-level copy of the graph.

A graph cover of degree m of the Tanner graph of H is a bipartite
graph G̃ such that for each vertex v there is a set of vertices
{v1, . . . , vm} of G̃ with deg vi = deg v for all 1 ≤ i ≤ m, and for every
edge {u, v} ∈ E there are m edges from {u1, . . . , um} to {v1, . . . , vm}
connected in a 1-1 manner.
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A pseudocodeword corresponds to a codeword of the
graph cover.

Iterative decoders operate locally on the Tanner graph, and so they
cannot distinguish between the code defined by the graph cover of H and
the code defined by H.
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Iterative decoders operate locally on the Tanner graph, and so they
cannot distinguish between the code defined by the graph cover of H and
the code defined by H.

Let C (G̃ ) ⊂ Fmn
2 be the code defined by a graph cover G̃ of the Tanner

graph of H.
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A pseudocodeword corresponds to a codeword of the
graph cover.
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1

0

A pseudocodeword of C (H) is p = (p1, . . . , pn) ∈ Nn such that there

exists a graph cover G̃ of degree m and a codeword

(c(1,1), . . . , c(1,m); . . . ; c(n,1), . . . , c(n,m)) ∈ Fmn
2

of C (G̃ ) such that pi = |{l | c(i,l) = 1}| for all i .
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Some pseudocodewords are
sums of codewords.
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1

1

1

0

(2, 1, 1, 1)
= (1, 0, 1, 0) + (1, 1, 0, 1)
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Some pseudocodewords are Some are not.
sums of codewords.

1

0

0

1

1

1

1

0

1

0

1

0

0

0

1

1

(2, 1, 1, 1) (1, 2, 1, 0)
= (1, 0, 1, 0) + (1, 1, 0, 1) 6= any sum of codewords

Let

P(H) = {p ∈ Nn | p is a pseudocodeword of C (H)} .
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Given H, the set of pseudocodewords can be
completely characterized via the fundamental cone.

Definition

The fundamental cone of a parity check matrix H ∈ Fr×n
2 is

K(H) =
{

v = (v1, . . . , vn) ∈ Rn | vi ≥ 0 and Rowj(H)vT ≥ 2hjivi ∀i , j
}
.

Theorem (Koetter, Li, Vontobel, and Walker 2007)

Given H ∈ Fr×n
2 , p ∈ Nn is a pseudocodeword of C (H) if and only if

p ∈ K(H), and

p reduces mod 2 to a codeword.
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The generating function for the pseudocodewords of a
cycle code is an edge zeta function.

Consider the pseudocodeword enumerator∑
v∈P(H)

xv

where xv = xv1
1 . . . xvnn for v = (v1, . . . , vn) ∈ Nn.

Theorem (Koetter et al. 2007)

If C (H) is a cycle code, a code for which the parity check matrix H has
exactly two 1’s in each column, then the following are equivalent:

(p1, p2, . . . , pn) is a pseudocodeword of C (H).

xp1

1 xp2

2 . . . xpnn has a nonzero coefficient in the power series expansion
of the edge zeta function ζ(x1, x2, . . . , xn) of the normal graph of H,
which is a rational function.

Question: Can we generalize this?
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The set of pseudocodewords itself does not form a
cone.

Theorem
The generating function of integer points in a rational cone is a rational
function.

Theorem (Koetter et al. 2007)

Given H ∈ Fr×n
2 , p ∈ Nn is a pseudocodeword of C (H) if and only if

p ∈ K(H), and

p reduces mod 2 to a codeword.
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The lifted fundamental cone has as a projection K(H).

Definition

Given a parity check matrix H ∈ Fr×n
2 , the lifted fundamental cone of

C (H) is

K̂(H) =

{
(v, a) ∈ Rn+r

∣∣∣ HvT = 2aT ,
vi ≥ 0, and Rowj(H)vT ≥ 2hjivi ∀i , j

}
.

Consider the projection
π : Rn+r → Rn

(v, a) 7→ v.

Proposition

Let H ∈ Fr×n
2 . Then

π
(
K̂(H)

)
= K(H),

and the set of pseudocodewords of C (H) is

π
(
K̂(H) ∩ Zn+r

)
= P(H).
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The lifted fundamental cone sieves out precisely the the
lattice points in K(H) which are not pseudocodewords.

The cone K(H)
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The generating function for the pseudocodewords of a
binary linear code is a rational function.

Theorem
The generating function of integer points in a rational cone is a rational
function.

Denote the generating function for integer points in the lifted
fundamental cone

f (x1, x2, . . . , xn+r ) :=
∑

(v,a)∈K̂(H)∩Zn+r

x(v,a).

Specializing the above function at (x1, . . . , xn, 1, . . . , 1) yields

f (x1, . . . , xn, 1, . . . , 1) =
∑

(v,a)∈K̂(H)∩Zn+r

xv =
∑

v∈π(K̂(H)∩Zn+r )

xv =
∑

v∈P(H)

xv.

Theorem (K. and Matthews 2011)

Given H ∈ Fr×n
2 , the generating function for the pseudocodewords of

C (H),
∑

v∈P(H) xv, is a rational function.
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Barvinok’s algorithm produces the generating function
of a cone as a rational function.

Theorem (Barvinok 1994)

Fix the dimension d . Given a rational cone K ⊂ Rd , there exists a
polynomial time algorithm which computes the generating function∑

a∈K∩Zd xa of the form∑
i∈I

εi
xui

(1− xui1 ) · · · (1− xuid )

where εi ∈ {1,−1}, and ui ,uij are integer vectors.
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Example

Consider the code C (H) where H =

(
1 1 1 0
1 0 1 1

)
.

Barvinok 0.27 computes∑
p∈P(H)

xp =
1− x2

1 x
2
2 x

2
3 x

2
4

(1− x1x3x2
4 )(1− x1x2

2 x3)(1− x2x3x4)(1− x1x2x4)(1− x1x3)

= 1 + x1x3 + x2x3x4 + x1x2x4 + x1x3x
2
4 + x1x

2
2 x3

+x2
1 x

2
3 + x2

1 x2x3x4 + x1x2x
2
3 x4 + . . .
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. . .

The pseudocodewords of C (H) are

(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 1, 1), (1, 1, 0, 1), (1, 0, 1, 2), (1, 2, 1, 0), . . .



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

Example

Consider the code C (H) where H =

(
1 1 1 0
1 0 1 1

)
.

Barvinok 0.27 computes∑
p∈P(H)

xp =
1− x2

1 x
2
2 x

2
3 x

2
4

(1− x1x3x2
4 )(1− x1x2

2 x3)(1− x2x3x4)(1− x1x2x4)(1− x1x3)

= 1 + x1x3 + x2x3x4 + x1x2x4 + x1x3x
2
4 + x1x

2
2 x3

+x2
1 x

2
3 + x2

1 x2x3x4 + x1x2x
2
3 x4 + . . .

+ . . .

The pseudocodewords of C (H) are

(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 1, 1), (1, 1, 0, 1), (1, 0, 1, 2), (1, 2, 1, 0), . . .
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The pseudocodewords of C (H) are

(0, 0, 0, 0), (1, 0, 1, 0), (0, 1, 1, 1), (1, 1, 0, 1), (1, 0, 1, 2), (1, 2, 1, 0), . . .

(2, 0, 2, 0), (2, 1, 1, 1), (1, 1, 2, 1), . . .
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Example

Consider the code C (H) of length 7 and dimension 2 given by a parity
check matrix

H =


1 1 0 0 0 0 0
0 1 1 1 0 0 0
1 0 1 0 0 0 0
0 0 0 1 1 0 1
0 0 0 0 1 1 0
0 0 0 0 0 1 1

 .

Barvinok 0.27 computes∑
p∈P(H)

xp =
1

(1− x1x2x3)(1− x1x2x3x2
4 x5x6x7)(1− x5x6x7)

.

This gives a complete characterization of the pseudocodewords of C (H);
that is, P(H) can be written as

{a(1, 1, 1, 0, 0, 0, 0)+b(1, 1, 1, 2, 1, 1, 1)+c(0, 0, 0, 0, 1, 1, 1) | a, b, c ∈ Z}.
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Irreducible pseudocodewords are those most likely to
cause decoding error.

A nonzero pseudocodeword is said to be irreducible provided it cannot
be written as a sum of two or more nonzero pseudocodewords.

Given a parity check matrix H ∈ Fr×n
2 , let Irr(H) denote the set of

irreducible pseudocodewords of C (H).

The Hilbert basis of an additive semigroup (G ,+) is the minimal set of
elements {b1, . . . , bt} such that

G = {λ1b1,+ . . .+ λtbt | λ1, . . . , λt ∈ N}.

Theorem (K. and Matthews 2011)

Given H ∈ Fr×n
2 , the set of integer points in the lifted fundamental cone

K̂(H) forms a semigroup under addition.

Furthermore, if B is the Hilbert basis of K̂(H) ∩ Zn+r , then

Irr(H) = π(B).



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

Irreducible pseudocodewords are those most likely to
cause decoding error.

A nonzero pseudocodeword is said to be irreducible provided it cannot
be written as a sum of two or more nonzero pseudocodewords.

Given a parity check matrix H ∈ Fr×n
2 , let Irr(H) denote the set of

irreducible pseudocodewords of C (H).

The Hilbert basis of an additive semigroup (G ,+) is the minimal set of
elements {b1, . . . , bt} such that

G = {λ1b1,+ . . .+ λtbt | λ1, . . . , λt ∈ N}.

Theorem (K. and Matthews 2011)

Given H ∈ Fr×n
2 , the set of integer points in the lifted fundamental cone

K̂(H) forms a semigroup under addition.

Furthermore, if B is the Hilbert basis of K̂(H) ∩ Zn+r , then

Irr(H) = π(B).



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

Irreducible pseudocodewords are those most likely to
cause decoding error.

A nonzero pseudocodeword is said to be irreducible provided it cannot
be written as a sum of two or more nonzero pseudocodewords.

Given a parity check matrix H ∈ Fr×n
2 , let Irr(H) denote the set of

irreducible pseudocodewords of C (H).

The Hilbert basis of an additive semigroup (G ,+) is the minimal set of
elements {b1, . . . , bt} such that

G = {λ1b1,+ . . .+ λtbt | λ1, . . . , λt ∈ N}.

Theorem (K. and Matthews 2011)

Given H ∈ Fr×n
2 , the set of integer points in the lifted fundamental cone

K̂(H) forms a semigroup under addition.

Furthermore, if B is the Hilbert basis of K̂(H) ∩ Zn+r , then

Irr(H) = π(B).



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

Example

Consider the simplex code of length 7 and dimension 3 with two choices
for parity check matrix

H1 =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 0 1 1 1 0
0 0 1 1 0 0 1

 and H2 =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 0 1 1 1 0
0 0 1 0 1 1 1

 .

The noncodeword irreducible pseudocodewords, found using 4ti2, are

(0, 0, 0, 2, 2, 2, 2), (0, 3, 0, 1, 2, 1, 1),
(0, 0, 3, 2, 1, 1, 1), (0, 0, 1, 2, 1, 1, 1),
(3, 0, 0, 1, 1, 2, 1), (0, 1, 0, 1, 2, 1, 1),
(2, 1, 0, 1, 0, 1, 1), (1, 2, 0, 1, 1, 0, 1),
(2, 0, 1, 0, 1, 1, 1), (0, 2, 1, 0, 1, 1, 1),
(1, 0, 0, 1, 1, 2, 1), (0, 1, 2, 1, 0, 1, 1),
(1, 0, 2, 1, 1, 0, 1),︸ ︷︷ ︸

Irreducible pseudocodeword of C(H1)

(2, 0, 3, 0, 1, 1, 1), (4, 0, 0, 0, 2, 2, 2), (0, 0, 0, 4, 2, 2, 2),
(0, 4, 0, 0, 2, 2, 2), (2, 0, 0, 0, 2, 2, 2), (0, 2, 0, 0, 2, 2, 2),
(3, 0, 0, 3, 1, 2, 1), (1, 1, 0, 2, 1, 1, 0), (3, 3, 0, 0, 1, 1, 2),
(1, 1, 0, 0, 1, 1, 2), (0, 1, 0, 3, 2, 1, 1), (1, 3, 0, 0, 1, 1, 2),
(3, 1, 0, 0, 1, 1, 2), (1, 0, 0, 3, 1, 2, 1), (0, 0, 0, 0, 2, 2, 2),
(0, 3, 0, 3, 2, 1, 1), (1, 1, 2, 0, 1, 1, 0), (0, 0, 3, 0, 1, 1, 1),
(0, 2, 3, 0, 1, 1, 1).

︸ ︷︷ ︸
Irreducible pseudocodeword of C(H2)
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Question: Given a code C , what is a good choice of parity check matrix
for C?
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Some pseudocodewords are Some are not.
sums of codewords.

1

0

0

1

1

1

1

0

1

0

1

0

0

0

1

1

(2, 1, 1, 1) (1, 2, 1, 0)
= (1, 0, 1, 0) + (1, 1, 0, 1) 6= any sum of codewords
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A geometrically perfect code has no “bad”
pseudocodewords.

Given H ∈ Fr×n
2 ,  ∑

c∈C(H)

acc

∣∣∣∣ ac ∈ N

 ⊆ P(H),

where
∑

c∈C(H) acc ∈ Nn.

If the equality holds, C (H) is called geometrically perfect.

Lemma (Wiberg 1996)

If H is cycle-free, then C (H) is geometrically perfect.

Sketch of Proof: A graph cover of H is disconnected copies of H.
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Theorem (K. 2012)

If C is a code which can be represented by a cycle-free parity check
matrix, then the following are equivalent:
1. C (H) is geometrically perfect.
2. There exist rows s1, s2, . . . , st of H such that

T = H − {s1, s2, . . . , st}

is cycle-free and C (T ) = C (H).
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To study pseudocodewords, we define pseudocheck.

We would like to “collapse” the
graph cover.
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To study pseudocodewords, we define pseudocheck.

We would like to “collapse” the
graph cover.

A pseudocheck node is satisfied
if and only if the integer value
assignment (a1, . . . , at) to its
neighbors satisfies the following
conditions:

ai ≥ 0 for all i ,∑t
j=1 aj = 0 mod 2, and∑t
j=1,j 6=i ai ≥ ai for all i .
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To study pseudocodewords, we define pseudocheck.

We would like to “collapse” the
graph cover.

An integer vector p is a
pseudocodeword if and only if
every pseudocheck is satisfied.
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Theorem
If C is a code which can be represented by a cycle-free parity check
matrix, then the following are equivalent:
1. C (H) is geometrically perfect.
2. There exist rows s1, s2, . . . , st of H such that

T = H − {s1, s2, . . . , st} is cycle-free and C (T ) = C (H).

Lemma (Kelley and Sridhara 2007)

If T = H − {s1, s2, . . . , st}, then P(H) ⊆ P(T ).

Proof (2.⇒ 1.):
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Theorem
If C is a code which can be represented by a cycle-free parity check
matrix, then the following are equivalent:
1. C (H) is geometrically perfect.
2. There exist rows s1, s2, . . . , st of H such that

T = H − {s1, s2, . . . , st} is cycle-free and C (T ) = C (H).

Lemma (Kelley and Sridhara 2007)

If T = H − {s1, s2, . . . , st}, then P(H) ⊆ P(T ).

Proof (2.⇒ 1.): If T is cycle free and C (T ) = C (H), then

P(H)⊆P(T )=

 ∑
c∈C(T )

acc

∣∣∣∣ ac ∈ N

=

 ∑
c∈C(H)

acc

∣∣∣∣ ac ∈ N

⊆P(H).

Therefore, C (H) is geometrically perfect.
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Theorem
If C is a code which can be represented by a cycle-free parity check
matrix, then the following are equivalent:
1. C (H) is geometrically perfect.
2. There exist rows s1, s2, . . . , st of H such that

T = H − {s1, s2, . . . , st} is cycle-free and C (T ) = C (H).

Lemma (Kelley and Sridhara 2007)

If T = H − {s1, s2, . . . , st}, then P(H) ⊆ P(T ).

Proof (1.⇒ 2.): Fix a cycle-free parity check matrix T with the smallest
number of edges such that C (T ) = C (H).
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The code C can be represented by a cycle-free parity
check matrix T .

T

Proof (1.⇒ 2.): Fix a cycle-free parity check matrix T with the smallest
number of edges such that C (T ) = C (H).



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

The code C can be represented by a cycle-free parity
check matrix T .

T

H

There exists a pseudocheck in T which is not in H.
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The code C can be represented by a cycle-free parity
check matrix T .

T

H

There exists a pseudocheck in T which is not in H.



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

A pivotal pseudocheck in T cannot be replaced by a
pseudocheck from H.

T

A pseudocheck u of T is pivotal if there does not exist a pseudocheck h
of H such that (T − {u}) ∪ {h} is cycle-free and
C ((T − {u}) ∪ {h}) = C (T ).
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A pivotal pseudocheck in T cannot be replaced by a
pseudocheck from H.

T

A pseudocheck u of T is pivotal if there does not exist a pseudocheck h
of H such that (T − {u}) ∪ {h} is cycle-free and
C ((T − {u}) ∪ {h}) = C (T ).

Fact
There exists a pivotal pseudocheck.
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Construct a pseudocodeword from a pivotal
pseudocheck.

T

u

Fix a pivotal pseudocheck u.
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Construct a pseudocodeword from a pivotal
pseudocheck.

T

u

Fix a pivotal pseudocheck u.
The graph of T − {u} has several connected components.
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Construct a pseudocodeword from a pivotal
pseudocheck.

T

u

Fix a pivotal pseudocheck u.
The graph of T − {u} has several connected components.
Assign the value 2 deg(u) to the bit nodes in one component, 0 to the bit
nodes adjacent to a pseudocheck of degree 1, and 2 to all other bit nodes.

Claim
The assignment is valid for H, but not for T .
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Proof of Claim: The assignment is invalid for T because it violates
pseudocheck u.

Fact

Suppose that τ1, . . . , τdeg(u) are connected components in T − {u} where
u is adjacent to a bit node in τ1, . . . , τdeg(u) in T .
For any pseudocheck h in H, if deg (h |τi ) ≥ 1 for some i , then either

deg (h |τi ) ≥ 2, or

deg(h) ≥ deg(u) + 1.

So, the assignment is valid for H.
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Example

T

u

The pivotal pseudocheck u has degree 4.
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Example

T

u

The pivotal pseudocheck u has degree 4.
There are 4 connected components in T − {u}.
Assign the value 8 = 2 deg(u) to the bit nodes in one component, and 2
to all other bit nodes.
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Example

T

u

The pivotal pseudocheck u has degree 4.
There are 4 connected components in T − {u}.
Assign the value 8 = 2 deg(u) to the bit nodes in one component, and 2
to all other bit nodes.
The assignment violates pseudocheck u.
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Example

H

The pivotal pseudocheck u has degree 4.
There are 4 connected components in T − {u}.
Assign the value 8 = 2 deg(u) to the bit nodes in one component, and 2
to all other bit nodes.
The assignment violates pseudocheck u.
The assignment is valid for H.
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Theorem (K. 2012)

If C is a code which can be represented by a cycle-free parity check
matrix, then the following are equivalent:
1. C (H) is geometrically perfect.
2. There exist rows s1, s2, . . . , st of H such that

T = H − {s1, s2, . . . , st}

is cycle-free and C (T ) = C (H).

There exists a class of parity check matrices with many small cycles
that perform well under iterative decoders.

A code C is capable of being geometrically perfect if and only if
H⊥7 , R10, or C (K5)⊥ cannot be obtained from C via a sequence of
shortening and puncturing operations (Kashyap 2008).



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

Theorem (K. 2012)

If C is a code which can be represented by a cycle-free parity check
matrix, then the following are equivalent:
1. C (H) is geometrically perfect.
2. There exist rows s1, s2, . . . , st of H such that

T = H − {s1, s2, . . . , st}

is cycle-free and C (T ) = C (H).

There exists a class of parity check matrices with many small cycles
that perform well under iterative decoders.

A code C is capable of being geometrically perfect if and only if
H⊥7 , R10, or C (K5)⊥ cannot be obtained from C via a sequence of
shortening and puncturing operations (Kashyap 2008).



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

Theorem (K. 2012)

If C is a code which can be represented by a cycle-free parity check
matrix, then the following are equivalent:
1. C (H) is geometrically perfect.
2. There exist rows s1, s2, . . . , st of H such that

T = H − {s1, s2, . . . , st}

is cycle-free and C (T ) = C (H).

There exists a class of parity check matrices with many small cycles
that perform well under iterative decoders.

A code C is capable of being geometrically perfect if and only if
H⊥7 , R10, or C (K5)⊥ cannot be obtained from C via a sequence of
shortening and puncturing operations (Kashyap 2008).



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

Table of contents

1 Preliminaries

2 Generating Function for Pseudocodewords

3 Geometrically Perfect Codes

4 Nonbinary Codes

5 Lattice Codes

KWittawat
Line



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

Notation

Fp = {0, 1, . . . , p− 1} is the finite field with p elements where p is prime.
⊕ and � denote finite field addition and multiplication.

A linear code C of length n and dimension k over Fp is a subspace of Fn
p

of dimension k.

A parity check matrix of a code C is any matrix H ∈ Fr×n
p such that C

is the null space of H.

Given a parity check matrix H of C and y ∈ Fn
p,

y ∈ C if and only if H � yT = 0 ∈ Fr×1
p .

Denote C (H) the code given by a parity-check matrix H.
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The Tanner graph of a nonbinary parity-check matrix is
a graph with weighted edges.

H =

(
1 2 2 1
2 0 1 2

)
∈ F2×4

3

The bit nodes X = {x1, . . . , xn} correspond to a column of H, the check
nodes F = {f1, . . . , fr} correspond to a row of H, and if hji 6= 0 then
{xi , fj} is an edge with weight

w(xi , fj) = hji .

A vector c = (c1, c2, . . . , cn) ∈ Fn
p is a codeword of C (H) if and only if∑

i∈Nbhd(fj )

w(xi , fj)� ci = 0

for all j where the summation is taken over Fp.
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The Tanner graph of a nonbinary code permits graph
covers similar to the Tanner graph of a binary code.
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The pseudocodeword on the left can be
represented by

M =

(
1 3 2 0
2 0 1 1

)
.
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A pseudocodeword of C (H) is a matrix
M ∈ Zp−1×n such that there exists a graph
cover G̃ and a codeword c̃ of C (G̃ ) where

mbi := |{1 ≤ l ≤ m | c(i,l) = b}|

for all b, i . We will also denote mi (b) := mbi .

The pseudocodeword on the left can be
represented by

M =

(
1 3 2 0
2 0 1 1

)
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The Tanner graph of a nonbinary code permits graph
covers similar to the Tanner graph of a binary code.
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We aim to generalize the binary fundamental cone.

Definition of Binary Fundamental Cone

The fundamental cone of a parity check matrix H ∈ Fr×n
2 is

K(H) =
{

v = (v1, . . . , vn) ∈ Rn | vi ≥ 0 and Rowj(H)vT ≥ 2hjivi ∀i , j
}
.

1

0

0

1

1

1

1

0

If v is a pseudocodeword,

Rowj(H)vT =
n∑

i=1

hjivi =
n∑

i=1

m∑
l=1

hjic(i,l).
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Consider

Θj =
n∑

i=1

m∑
l=1

hji � c(i,l)

where 1 ≤ j ≤ r .

We can compute Θj as

Θj =
n∑

i=1

m∑
l=1

hji � c(i,l)

=
n∑

i=1

p−1∑
b=1

∑
{l|c(i,l)=b}

b � hji

=

p−1∑
b=1

n∑
i=1

(b � hji
)
·

∑
{l|c(i,l)=b}

1


=

p−1∑
b=1

n∑
i=1

(
b � hji

)
mi (b)

=

p−1∑
b=1

(
b � Rowj(H)

)
Rowb(M)T .
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Multiple of a codeword is a codeword.

If c is a codeword of a p-ary code C , so is a� c where a ∈ F∗p.

Definition
Define

Θj(a,M) =

p−1∑
b=1

(
a� b � Rowj(H)

)
Rowb(M)T

where a ∈ F∗p, 1 ≤ j ≤ r , and M ∈ Z(p−1)×n.
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Theta function gives bound similar to the binary case.

Recall the inequality 1
2Rowj(H)vT ≥ hjivi = vi if i ∈ supp(Rowj(H)).

Proposition

Consider a parity-check matrix H ∈ Fr×n
p where p is prime. If M is a

pseudocodeword of C (H), then

1

p
Θj(a,M) ≥ mi (1) + mi (2) + . . .+ mi (p − 1)

where 1 ≤ j ≤ r , a ∈ F∗p, and i ∈ supp(Rowj(H)).

Sketch of Proof:

1

p
Θj(a,M)≥ the minimum number of covers needed to realize M

≥ mi (1) + mi (2) + . . .+ mi (p − 1).

This inequality, however, is insufficient.
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Critical multiset is the “forbidden” configurations.

Definition

A multiset Γ = {γ1, . . . , γt} ⊆ Fp is critical if and only if t > 1 and∑
γi∈Γ

γi > (t − 1)p.

There is no critical multiset over F2. The only critical multiset over F3 is
{2, 2}. Critical multisets over F5 are:

{2, 4}, {3, 3}, {3, 4}, {4, 4}, {3, 4, 4}, and {4, 4, 4}.

If a multiset Γ = {γ1, . . . , γt} ⊆ Fp is critical, then∑
γi∈Γ

γi 6= 0 mod p,

and any multisubset of Γ is critical.
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Toward characterizing nonbinary pseudocodewords

Theorem (K. and Matthews 2012)

Let H ∈ Fr×n
p where p is prime. If M is a pseudocodeword of C (H), then

1

p
Θj(a,M) ≥ mi (1) + mi (2) + . . .+ mi (p − 1),

1

p
Θj(a,M) ≥ mi1

(
a� γ1 � h−1

ji1

)
+ . . .+ mit

(
a� γt � h−1

jit

)
,

mi (b) ≥ 0,

and
H �MT �

(
1 2 . . . p − 1

)T
= 0

for all a, b ∈ F∗p, 1 ≤ j ≤ r , i , i1, . . . , it ∈ supp(Rowj(H)), and critical
multiset {γ1, . . . , γt}.

The converse is true for binary codes (Koetter et al. 2007) and
ternary codes (Skachek 2010).

The number of inequalities is exponential in n.
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Lattice codes are linear codes analog for continuous-
valued AWGN channel.

A lattice is a discrete additive subgroup of Rn.



Preliminaries Generating Function for Pseudocodewords Geometrically Perfect Codes Nonbinary Codes Lattice Codes

We may apply iterative decoders to lattices constructed
from codes using Construction A.

A binary code C (H) ⊆ Fn
2 yields a lattice

ΛA = {v ∈ Zn | v reduces mod 2 to a codeword of C (H)}.

A check node is satisfied if the sum of its neighbors is an even integer.
Apply iterative decoders for binary codes to v − a ∈ [0, 1]n for an
appropriately chosen a (Conway and Sloane 1999).
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Sadeghi et al. (2006) apply iterative decoders to
lattices constructed from codes using Construction D’.

Nested binary codes C (Ha) ⊆ C (Ha−1) ⊆ . . . ⊆ C (H1) yield a lattice

ΛD′ = {v ∈ Zn | H · vT ≡ 0 mod (2a+1) for some H}.

4 

4 

4 

A check node is satisfied if the weighted sum of its neighbors is an
integer divisible by 2a+1.
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Nested binary codes C (Ha) ⊆ C (Ha−1) ⊆ . . . ⊆ C (H1) yield a lattice

ΛD′ = {v ∈ Zn | H · vT ≡ 0 mod (2a+1) for some H}.
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A check node is satisfied if the weighted sum of its neighbors is an
integer divisible by 2a+1.
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Sommer et al. (2008) apply iterative decoders to
lattices using the dual basis.

A lattice can be defined by its dual basis {b1, . . . ,bn}; that is,

Λ = {v | v · bi is an integer vector for all i}.
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A check node is satisfied if the weighted sum of its neighbors is an
integer. In this case, the message is a probability density function.
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